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Abstract— Application of control theory to auction networks
is important since it offers computationally efficient solutions to
otherwise intractable problems. It is also of great significance
due to the widespread use of auctions for resource allocation,
e.g. in online advertising. But controlling agents in many large
auction networks is challenging because of an uncertain and
discontinuous plant. In this paper we utilize bid randomization
to make the plant effectively continuous and present novel
theoretical results for how to estimate the plant gain given
a model uncertainty of the competitive landscape.

I. INTRODUCTION

Online advertising presents very interesting and extremely
challenging problems in feedback control and computational
systems. Good solutions have the prospect of making a huge
positive business impact because of the large size and rapid
growth of the industry.

An early publication on feedback control applied to online
advertising is available in [1], wherein several important
challenges are outlined but detailed solutions are omitted. A
more comprehensive and up-to-date overview of the control
problem is available in [2]. There the author proposes a
bid randomization technique [3] to overcome some of the
challenges. One of the challenges is the need to estimate
extremely small event rates [4], and another is to control
the event rate of a discontinuous plant [5]. The fact that the
plant is unknown, dynamic, nonlinear, and in general dis-
continuous is a characteristic property of online advertising
processes and is a fundamental challenge in the develop-
ment of feedback control solutions. Different approaches at
indirectly estimating and controlling the plant are proposed
in [6], [7]. The former of these papers makes use of bid ran-
domization, but both are based exclusively on local feedback
information to estimate the plant gain. Adaptive estimation
and control is always challenging since it requires persistent
excitation [8], but is particularly difficult when the unknown
plant is nonlinear and potentially discontinuous. A systematic
methodology for off-line modelling of advertising plants is
proposed in [9]. The methodology is conveniently used to
simulate realistic plants in a test bed for control algorithms.

In this paper we shall estimate the gain of an advertising
plant based on a global nominal plant model and a given
model uncertainty. The plant model and uncertainty may be
derived using techniques from [9], but may alternatively be
computed by simply counting the number of available ad
impressions (the opportunity of showing an ad creative) that
were available at different price points for some sampled
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subset of historical data. Our main contribution is four
theorems translating the nominal plant model and model
uncertainty into statistical properties of the plant gain. To
our best knowledge there is no previous work resembling
what is presented in this paper.

The paper is organized as follows. First, we formulate the
problem in Section II. Next, in Section III, the Heisenberg
bid randomization technique is introduced. The basic rules
for impression allocation in online advertising are explained
in Section IV. The key results of the paper are presented in
Section V in the form of four theorems, and are illustrated
in a simulated example in Section VI. Finally, the paper is
wrapped up with some concluding remarks in Section VII.

II. PROBLEM FORMULATION

The ultimate objective is to manage an advertisement
budget to the satisfaction of the advertiser in the common
setup where impressions are awarded via an open Real
Time Bidding (RTB) exchange. In an RTB exchange any
advertiser can submit bids for available impressions. An
advertiser typically wants to maximize the total returned
value of the available budget while satisfying one or more
constraints. The most common constraint is on the smooth
delivery of the budget, e.g. to deliver a certain number of
$US worth of impressions per day. Due to the massive scale
and dynamic nature of the competitive landscape, we are
limited to decentralized and feedback-based techniques [2].

Optimal feedback-based control of an ad campaign in-
volves adjusting the bid price for different impression oppor-
tunities up or down until the total value is maximized without
any constraint being violated [2]. The feedback data is noisy,
but more importantly, the delivery response to adjustments in
bid prices is discontinuous and varies dramatically depending
on the competitive landscape. See Figure 1 for an example

Fig. 1. An example of impression volume versus bid price relationship.
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of the characteristic staircase relationship between bid price
and awarded impression count. The discontinuous nature of
the process makes an analytical treatment of the problem
cumbersome, but a method to turn the system effectively
continuous was proposed in [3], [2]. See Section III for
more details on this method. The now continuous control
problem is still challenging in both theory and practice since
the process remains nonlinear and the competitive landscape
is a priori unknown. Note, no matter how short the system
delay is, closed loop stability demands that the loop gain is
less than one around the optimal operating point [10]. But
to design a controller that leads to a sufficiently small loop
gain we must know the process sensitivity (or plant gain).

Assume we have access to a historical snapshot of the
competitive landscape describing how many impression op-
portunities were available at different price points. The
snapshot may be the result of temporal filtering and future
projection, but most importantly, it is at best an estimate of
what the competitive landscape will be in the future. The
objective of this paper is to estimate the plant gain between
bid price and impression volume at different operating points
of the bid price based on an uncertain estimate of the
competitive landscape. It is outside the scope of this paper
to utilize the estimated plant gain for control design.

III. HEISENBERG BIDDING

Heisenberg bidding [3], [2] operates by randomly perturb-
ing a nominal bid price up according to some statistical
distribution. Heisenberg bidding can be implemented with
other probability distributions, but in this paper it is defined
by the gamma distribution (Appendix A) parameterized by
up and a bid uncertainty uu, to generate a final bid price u
used in the market clearing. In particular, u is a realization
of a random variable U defined by

U ∼ Gamma
(

1

u2
u

,
1

upu2
u

)
if up, uu > 0 (1)

and U = up, otherwise. In terms of the shape parameter
α and the inverse scale parameter β, Heisenberg bidding is
defined by α = 1/u2

u and β = 1/(upu
2
u). Hence, EU = up

and Var (U) = u2
pu

2
u. In other words, uu = Std(U)/EU ,

where Std(U) is the standard deviation of U .
Figure 2 shows three examples of Heisenberg bid distribu-

Fig. 2. Three examples of Gamma probability density functions parame-
terized by the nominal bid price up and the bid uncertainty uu.

tions. The bid uncertainty uu defines the level of perturbation

of the nominal bid. If uu = 0 there is no perturbation at
all. The smaller uu is, the spikier is the probability density
function (PDF).

Depending on the value of the bid uncertainty, the primary
plant input-output relationship (up to nI ) can be made
arbitrarily smooth. This is illustrated in Figure 3, which
shows the result of adding the dimension of bid uncertainty
to the plant in Figure 1.

Fig. 3. The impact of using bid uncertainty on the plant in Figure 1. Note
that nI is discontinuous with respect to up only when uu equals zero.

IV. IMPRESSION ALLOCATION IN ONLINE ADVERTISING

Consider an advertising campaign interested in impres-
sions from an inventory pool subdivided into n segments. A
segment may represent a type of users, e.g. “Female Users
between 20 and 30 years of Age,” “Tech Geeks,” or “Internet
Users that have not seen a specific ad before,” but may as
well be defined as “Any User” or “A Unique User”.

The impression allocation for segment i is governed by a
sealed standard auction [11], where u is the bid price used in
the auction. The highest competing bid price is denoted ui,
and the available number of impressions ntotI,i . The number of
awarded impressions from segment i is consequently nI,i =
I{u≥ui}n

tot
I,i , where for simplicity we assume the auction is

always won if u ≥ ui and where IX is the indicator function
satisfying IX = 1, if X = true, and IX = 0, if X = false.

The campaign-level impression volume nI is obtained by
summing across all segments targeted by the campaign:

nI =
∑
i

I{u≥ui}n
tot
I,i . (2)

However, u, ui, and ntotI,i are often random or unknown and
better described as realizations of random variables U , Ui,
and N tot

I,i . Hence, nI is a realization of the random variable
NI =

∑
i I{U≥Ui}N

tot
I,i . We choose to generate u via

Heisenberg bidding (Section III); i.e., the bid price for each
impression auction is an independent sample from a proba-
bility density function defined by (1), and parameterized by
up and uu. Assume that ui and ntotI,i are constant, but known
only in Bayesian sense as samples from probabilistic belief
functions of Ui and N tot

I,i . Conditioned on Ui and N tot
I,i , each

auction for a segment i impression is a Bernoulli experiment
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with success rate equal to Pr (U ≥ Ui|Ui) while NI,i =
I{U≥Ui}N

tot
I,i is a binomial random variable (Appendix B)

defined by NI,i ∼ Binomial
(
N tot
I,i ,Pr (U ≥ Ui|Ui)

)
.

The success rate is used extensively in the following
derivations and is referred to as the win rate. Define win
rate, Wi, as the probability that an auction for a segment
i impression is won by outbidding all other bidders, hence
Wi = Pr (U ≥ Ui|Ui). But according to the scaling property
of the gamma distribution stating that whenever X ∼
Gamma(α, β), then βX ∼ Gamma(α, 1) [12], it follows
that Wi = Pr(U/(u2

uup) ≥ Ui/(u
2
uup)|Ui) = Pr(Ú ≥

Ui/(u
2
uup)|Ui), where Ú ∼ Gamma(1/u2

u, 1). Since the
cumulative density function FÚ (úi) = Pr(Ú ≤ úi) for any
úi it follows that

Wi = 1− FÚ

(
Ui
u2
uup

∣∣∣∣Ui) . (3)

Define win rate sensitivity, Wup,i, as the derivative of Wi

with respect to up. It is straight-forward to show that

Wup,i = fÚ

(
Ui
u2
uup

∣∣∣∣Ui) Ui
u2
uu

2
p

. (4)

To turn Wup,i into a more useful format we make use of the
following theorem:

Theorem 4.1:
If X ∼ Gamma(α, β), then fX(x)x = αfX̀(x)/β, where
X̀ ∼ Gamma(α+ 1, β).

Proof: Replace fX(x) with the expression defining the
Gamma probability density function

fX(x)x =
βα

Γ(α)
xα−1e−βxx

=
Γ(α+ 1)

Γ(α)β

[
βα+1

Γ(α+ 1)
xαe−βx

]
.

The expression in [·] is the probability density function
of a Gamma(α + 1, β) random variable, and Γ(α + 1) =
αΓ(α) [13]. It follows that

fX(x)x =
α

β
fX̀(x),

where X̀ ∼ Gamma(α + 1, β), which completes the proof.

A direct application of Theorem 4.1 to (4) yields

Wup,i =
1

u2
uup

fŨ

(
Ui
u2
uup

∣∣∣∣Ui) , (5)

where Ũ ∼ Gamma
(
1/u2

u + 1, 1
)
.

For a particular realization of Ui the win rate and the win
rate sensitivity are denoted wi and wup,i, respectively, and
obtained by replacing Ui by ui in (3) and (5).

The campaign-level impression volume is given by the
sum of awarded impressions in individual segments; i.e.,
NI =

∑
iNI,i, where the conditional NI,is are independent

Binomial
(
N tot
I,i ,Wi

)
random variables. Its expected value is

referred to as the impression rate and is denoted Y ; i.e.,

Y = E
(
NI |N tot

I,i ,Wi,∀i
)

=
∑
i

N tot
I,iWi. (6)

The variance Var
(
NI |N tot

I,i ,Wi,∀i
)

=
∑
iN

tot
I,iWi(1−Wi)

is not discussed beyond this paragraph, but note if the cam-
paign is competitive in at least some sufficiently large seg-
ment of impressions (N tot

I,i and Wi are sufficiently large for
some i), then Std

(
NI |N tot

I,i ,Wi,∀i
)
/E
(
NI |N tot

I,i ,Wi,∀i
)

is
small and Y ∈ R≥0 is an excellent approximation of NI ∈
Z≥0 conditioned on N tot

I,i and Wi, for i = 1, . . . , n.
The impression rate sensitivity, Yup

, is defined by Yup
=

dY/dup and since N tot
I,i is independent of up it follows that

Yup
=

∑
i

N tot
I,iWup,i. (7)

In the context of feedback control Yup
represents the plant

gain at the control signal value up. Knowledge of Yup and
its statistical properties can be used to select a controller
gain that results in a stable and robust closed loop system
according to the Nyquist criteria. Last but not least, note that
Y and Yup

are random variables in Bayesian sense (they are
unknown constant values).

V. PLANT GAIN ESTIMATION

The remainder of the paper is focused on the statistical
inference of impression rate sensitivity, or plant gain, which
is the more commonly used term in the control system
community. Keep in mind that Yup

is viewed as a random
variable only in Bayesian sense since N tot

i and Ui, for
i = 1, 2, . . ., are not known precisely. Our ultimate goal is to
derive formulas for the Bayesian EYup

and VarYup
, where

the expectation and variance operators are with respect to
the unknown N tot

i and Ui based on some assumed statistical
properties of their belief functions. With this goal we prove
the following theorems.

Theorem 5.1: Expected Win Rate Sensitivity
Assume a randomized bidding strategy U ∼
Gamma

(
1/u2

u, 1/(u
2
uup)

)
with up, uu > 0. If the

highest competing bid price, ui, is only known
probabilistically as a realization of the random variable
Ui ∼ Gamma

(
1/σ2

u, 1/(σ
2
uūi)

)
, for known values of

σu, ūi > 0, then the expected win rate sensitivity is

EWup,i =
u2
uσ

2
ufZ1

(
u2
uup

σ2
uūi+u2

uup

)
up (u2

u + σ2
u + u2

uσ
2
u) (u2

u + σ2
u)
, (8)

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
.

Proof: The expected win rate sensitivity is given by

EWup,i =

∫ ∞
0

wup,i(ui)fUi
(ui)dui,

where wup,i(ui) is a realization of (5) and fUi
(ui) is the

probability density function of a Gamma
(
1/σ2

u, 1/(σ
2
uūi)

)
random variable. Plugging in the expressions for wup,i(ui)
and fUi(ui) yields

EWup,i =

∫ ∞
0

1

u2
uup

1

Γ(1/u2
u + 1)

(
ui
u2
uup

)1/u2
u

e−ui/(u
2
uup)

· (1/(σ
2
uūi))

1/σ2
u

Γ(1/σ2
u)

u
1/σ2

u−1
i e−ui/(σ

2
uūi)dui.
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Collect all factors independent of ui and move them outside
the integral sign.

EWup,i =

∫∞
0
u

1/u2
u+1/σ2

u−1
i e−(1/(u2

uup)+1/(σ2
uūi))uidui

Γ(1/u2
u + 1)Γ(1/σ2

u)(u2
uup)

1/u2
u+1(σ2

uūi)
1/σ2

u
.

The integrand is recognized as the kernel of a
Gamma(1/u2

u + 1/σ2
u, 1/(u

2
uup) + 1/(σ2

uūi)) probability
distribution, hence the integral over (0,∞) must equal
Γ(1/u2

u + 1/σ2
u)/[1/(u2

uup) + 1/(σ2
uūi)]

1/u2
u+1/σ2

u .
Replacement of the integral with this expression and
straight-forward rearrangement of the right hand side yields

EWup,i =

Γ

(
1

u2
u

+
1

σ2
u

)
u2
uupΓ

(
1

u2
u

+ 1

)
Γ

(
1

σ2
u

)
·
(

u2
uup

σ2
uūi + u2

uup

)1/σ2
u
(

1− u2
uup

σ2
uūi + u2

uup

)1/u2
u

.

But 0 < u2
uup/(σ

2
uūi +u2

uup) < 1, hence the expression for
EWup,i contains the kernel of a Beta

(
1/σ2

u + 1, 1/u2
u + 1

)
distribution (Appendix C) evaluated at u2

uup/(σ
2
uūi+u

2
uup).

Replacing the kernel with an expression containing the
corresponding beta PDF yields

EWup,i =

Γ

(
1

u2
u

+
1

σ2
u

)
u2
uupΓ

(
1

u2
u

+ 1

)
Γ

(
1

σ2
u

)
·B
(

1

σ2
u

+ 1,
1

u2
u

+ 1

)
fZ1

(
u2
uup

σ2
uūi + u2

uup

)
,

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
. Now, use the

known identities Γ(x + 1) = xΓ(x), for x > 0, and
B(x, y) = Γ(x)Γ(y)/Γ(x + y) [13] together with various
cancelations to obtain

EWup,i =

1

u2
u

· 1

σ2
u

fZ1

(
u2
uup

σ2
uūi + u2

uup

)
up

(
1

u2
u

+
1

σ2
u

+ 1

)(
1

u2
u

+
1

σ2
u

) .
This can be further simplified as

EWup,i =

u2
uσ

2
ufZ1

(
u2
uup

σ2
uūi + u2

uup

)
up (u2

u + σ2
u + u2

uσ
2
u) (u2

u + σ2
u)
,

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
, which completes

the proof.
Theorem 5.2: Expected Impression Rate Sensitivity

Assume a randomized bidding strategy U ∼
Gamma

(
1/u2

u, 1/(u
2
uup)

)
with up, uu > 0 and consider

impressions in n segments denoted i = 1, . . . , n. Suppose
the highest competing bid price ui and the total number
of available impressions ntoti , i = 1, . . . , n, are known
only probabilistically as realizations of random variables
Ui and N tot

i , where Ui ∼ Gamma
(
1/σ2

u, 1/(σ
2
uūi)

)
and

EN tot
i = n̄toti , for known values of σu, ūi, and n̄toti . If

Ui and N tot
i are independent for all i, then the expected

impression rate sensitivity is

EYup
=

u2
uσ

2
u

∑n
i=1 n̄

tot
i fZ1

(
u2
uup

σ2
uūi+u2

uup

)
up (u2

u + σ2
u + u2

uσ
2
u) (u2

u + σ2
u)

,

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
.

Proof: The expected impression rate sensitivity is given
by the expected value of (7). Since N tot

i and Wup,i are
independent it follows that

EYup =

n∑
i=1

E
(
N tot
i

)
E
(
Wup,i

)
.

Replace E (N tot
i ) with n̄toti and E

(
Wup,i

)
with (8) yields

EYup =
u2
uσ

2
u

∑n
i=1 n̄

tot
i fZ1

(
u2
uup

σ2
uūi+u2

uup

)
up (u2

u + σ2
u + u2

uσ
2
u) (u2

u + σ2
u)

,

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
, which completes

the proof.
Theorem 5.3: Second Moment of Win Rate Sensitivity

Assume a randomized bidding strategy U ∼
Gamma

(
1/u2

u, 1/(u
2
uup)

)
with up, uu > 0. If the highest

competing bid price ui is known only probabilistically as a
realization of Ui, where Ui ∼ Gamma

(
1/σ2

u, 1/(σ
2
uūi)

)
for

known values of σu, ūi, then the second moment of the win
rate sensitivity is

EW 2
up,i =

21−2/u2
u

B

(
1

u2
u

,
1

u2
u

) u2
uσ

2
ufZ2

(
u2
uup

2σ2
uūi+u2

uup

)
u2
p (2σ2

u + u2
u + u2

uσ
2
u) (2σ2

u + u2
u)
,

where Z2 ∼ Beta
(
1/σ2

u + 1, 2/u2
u + 1

)
.

Proof: The second moment of the win rate sensitivity
is given by

EW 2
up,i =

∫ ∞
0

w2
up,i(ui)fUi

(ui)dui,

where wup,i(ui) is a realization of (5) and fUi(ui) is the
probability density function of a Gamma

(
1/σ2

u, 1/(σ
2
uūi)

)
random variable. Plugging in the expressions for wup,i(ui)
and fUi

(ui) yields

EW 2
up,i =

∫ ∞
0

(
1

u2
uup

1

Γ(1/u2
u + 1)

(
ui
u2
uup

)1/u2
u

e−ui/(u
2
uup)

)2

· (1/(σ
2
uūi))

1/σ2
u

Γ(1/σ2
u)

u
1/σ2

u−1
i e−ui/(σ

2
uūi)dui.

Collect all factors independent of ui and move them
outside the integral sign.

EW 2
up,i =

∫∞
0
u

2/u2
u+1/σ2

u−1
i e−(2/(u2

uup)+1/(σ2
uūi))uidui(

u2
uupΓ(1/u2

u + 1)(u2
uup)

1/u2
u

)2
Γ(1/σ2

u)(σ2
uūi)

1/σ2
u

.

The integrand is recognized as the kernel of a
Gamma(2/u2

u + 1/σ2
u, 2/(u

2
uup) + 1/(σ2

uūi)) probability
distribution, hence the integral over (0,∞) must equal
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Γ
(
2/u2

u + 1/σ2
u

)
/
(
2/(u2

uup) + 1/(σ2
uūi)

)2/u2
u+1/σ2

u . Re-
placement of the integral with this expression and straight-
forward rearrangement of the right hand side yields

EW 2
up,i =

Γ

(
2

u2
u

+
1

σ2
u

)
22/u2

uu2
pΓ

(
1

u2
u

)2

Γ

(
1

σ2
u

)
·
(

1− u2
uup

2σ2
uūi + u2

uup

)2/u2
u
(

u2
uup

2σ2
uūi + u2

uup

)1/σ2
u

.

But 0 < u2
uup/(2σ

2
uūi+u

2
uup) < 1, hence the expression for

EW 2
up,i

contains the kernel of a Beta
(
1/σ2

u + 1, 2/u2
u + 1

)
distribution evaluated at u2

uup/(2σ
2
uūi + u2

uup). Replacing
the kernel with an expression containing the corresponding
beta PDF yields

EW 2
up,i =

Γ

(
2

u2
u

+
1

σ2
u

)
22/u2

uu2
pΓ

(
1

u2
u

)2

Γ

(
1

σ2
u

)
·B
(

1

σ2
u

+ 1,
2

u2
u

+ 1

)
fZ2

(
u2
uup

2σ2
uūi + u2

uup

)
,

where Z2 ∼ Beta
(
1/σ2

u + 1, 2/u2
u + 1

)
. Now, use the previ-

ously referenced properties of the Γ(x) and B(x, y) functions
together with various cancelations to obtain

EW 2
up,i =

21−2/u2
u

B

(
1

u2
u

,
1

u2
u

) σ2
uu

2
ufZ2

(
u2
uup

2σ2
uūi + u2

uup

)
u2
p (2σ2

u + u2
u + σ2

uu
2
u) (2σ2

u + u2
u)
,

where Z2 ∼ Beta
(
1/σ2

u + 1, 2/u2
u + 1

)
, which completes

the proof.

Theorem 5.4: Variance of Impression Rate Sensitivity
Assume a randomized bidding strategy U ∼
Gamma

(
1/u2

u, 1/(u
2
uup)

)
with up, uu > 0 and consider

impressions in n segments denoted i = 1, . . . , n. Suppose
the highest competing bid price ui and the total number
of available impressions ntoti , i = 1, . . . , n, are known
only probabilistically as realizations of random variables
Ui and N tot

i , where Ui ∼ Gamma
(
1/σ2

u, 1/(σ
2
uūi)

)
,

EN tot
i = n̄toti , and VarN tot

i = σ2
I (n̄toti )2 for known values

of σu, ūi, σI , n̄toti . If Ui⊥Uj , N tot
i ⊥N tot

j , and Ui⊥N tot
i , for

all i 6= j, (⊥ denotes independence), and σu, ūi > 0, then
the variance of the impression volume sensitivity is

VarYup = −
u4
uσ

4
u

∑n
i=1

(
n̄toti

)2
f2
Z1

(
u2
uup

σ2
uūi+u2

uup

)
[up (u2

u + σ2
u + u2

uσ2
u) (u2

u + σ2
u)]2

+
21−2/u2

u
(
1 + σ2

I

)
B

(
1

u2
u

,
1

u2
u

) u2
uσ

2
u

∑n
i=1

(
n̄toti

)2
fZ2

(
u2
uup

2σ2
uūi+u2

uup

)
u2
p (2σ2

u + u2
u + u2

uσ2
u) (2σ2

u + u2
u)

,

where Z1 ∼ Beta
(
1/σ2

u + 1, 1/u2
u + 1

)
and Z2 ∼

Beta
(
1/σ2

u + 1, 2/u2
u + 1

)
.

Proof: We are looking for the variance of (7)
and because of the independence properties of Ui and
N tot
i , the variance equals the sum of the variance

of all terms; i.e., VarYup
=

∑
i VarYup,i, where

Yup,i = N tot
I,iWup,i. To evaluate the variance of each

term Yup,i we make use of the conditional variance iden-
tity [12], which states that for random variables X and
Y , VarX = E (Var (X|Y )) + Var (E (X|Y )). It fol-
lows that Var

(
Yup,i

)
= E

(
Var

(
N tot
I,iWup,i|Wup,i

))
+

Var
(
E
(
N tot
I,iWup,i|Wup,i

))
. Use the independence of N tot

I,i

and Wup,i to obtain Var
(
Yup,i

)
= Var

(
N tot
I,i

)
E
(
W 2
up,i

)
+(

EN tot
I,i

)2
Var

(
Wup,i

)
. For any random variable X , we have

that VarX = E(X2)− (EX)2, hence

Var
(
Yup,i

)
= Var

(
N tot
I,i

)
E
(
W 2
up,i

)
+
(
EN tot

I,i

)2 (
E
(
W 2
up,i

)
−
(
EWup,i

)2)
.

By assumption EN tot
I,i = n̄toti and VarN tot

I,i = σ2
I (n̄toti )

2

while expressions for EWup,i and E
(
W 2
up,i

)
were derived

in Theorems 5.1 and 5.3. Combining these results and
summing over i yields the expression for VarYup

stated in
this theorem, which completes the proof.

VI. SIMULATION RESULTS

Consider a plant consisting of six segments and
with nominal parameters defined in table I. Assume

TABLE I
NOMINAL PLANT PARAMETERS

i 1 2 3 4 5 6
ūi 0.2 0.3 0.9 2.4 2.5 3
n̄totI,i/103 1 0.2 1.8 0.4 0.4 0.7

the true highest competing bid price ui and avail-
able number of impressions ntotI,i are random realiza-
tions from Ui ∼ Gamma

(
1/σ2

u, 1/(σ
2
uūi)

)
and N tot

I,i ∼
Gamma

(
1/σ2

I , 1/(σ
2
I n̄

tot
I,i )
)
, with the model uncertainty

given by σu = σI = 0.1. Consider a randomized bidding
strategy U ∼ Gamma

(
1/u2

u, 1/(u
2
uup)

)
with uu = 0.05.

The top subplot of Figure 4 shows 10 randomly gener-
ated “true” (red) and the nominal (black) impression rate
curves Y . In the middle plot the actual (red), the nominal
(black), and the expected (green: Theorem 5.2) impression
rate sensitivity Yup

are displayed. The final plot graphs the
standard deviation of the impression rate sensitivity (green:
Theorem 5.4). Note how the model uncertainty is encoded
in EYup

and StdYup
providing important information to a

control system in situations where the nominal plant gain
otherwise may underestimate the true plant gain. Hence,
the results derived in this paper enable a higher performing
robust control system.
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Fig. 4. Top: 10 randomly generated “true” response curves (red) and the
nominal response curve (black). Middle: the true (red), the nominal (black),
and the expected (green) impression rate sensitivity. Bottom: The standard
deviation of the impression rate sensitivity (green).

VII. CONCLUSIONS

We have derived theoretical results for how to translate
an uncertain competitive bidding landscape into a plant gain
estimate (mean and variance). The results enable a robust
control design, which is outside the scope of this paper.
For software implementations of Theorems 5.2 and 5.4 we
recommend making use of the following trivial identity to
avoid numerical instability for small values of uu:

21−2/u2
u

B

(
1

u2
u

,
1

u2
u

) = e

(
1−

2

u2
u

)
ln 2−2 ln Γ

(
1

u2
u

)
+ln Γ

(
2

u2
u

)
. (9)

One future research direction is to use the results in this
paper to compute a sound value of bid uncertainty uu. The
goal may be e.g. to reduce the necessary gain margin for a
control system and thereby enhance the control performance.

APPENDIX

A. Gamma Distribution

The gamma distribution with parameters α and β is a
continuous probability distribution. If the random variable X
follows the gamma distribution we write X ∼ Gamma(α, β).
The probability density function of x is given by

fX (x) =
βα

Γ(α)
xα−1e−βx (10)

for x > 0, where Γ(α) is the gamma function defined by
Γ(α) =

∫∞
0
e−ttα−1dt. Parameters α > 0 and β > 0 are

referred to as shape and inverse scale. The expected value
and variance of X are E(X) = α/β while the variance is
Var(X) = α/β2.

B. Binomial Distribution

The binomial distribution with parameters n and p is a dis-
crete probability distribution. If the random variable X fol-
lows the binomial distribution we write X ∼ Binomial(n, p).

The probability mass function of x is given by

fX (x) =

(
n
x

)
px(1− p)n−x (11)

for x = 0, 1, . . . , n. Parameters n ∈ {1, 2, . . .} and p ∈ [0, 1]
are referred to as number of trials and success probability in
each trial, respectively. The expected value of X is E(X) =
np while the variance is Var(X) = np(1− p).

C. Beta Distribution

The beta distribution with parameters α and β is a con-
tinuous probability distribution. If the random variable X
follows the beta distribution we write X ∼ Beta(α, β). The
probability density function of x is given by

fX (x) =
xα− 1(1− x)β − 1

B(α, β)
, (12)

for 0 < x < 1, where B(α, β) is the beta function (also
called the Euler integral) defined by B(α, β) =

∫ 1

0
xα− 1(1−

x)β − 1dx. Parameters α > 0 and β > 0 are referred to as
shape parameters. The expected value and variance of X are
E(X) = α/(α+β) and Var(X) = αβ/[(α+β)2(α+β+1)].
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